Persönlicher Status und Werkzeuge

Prof. Dr. David Franklin

Associate Professor

Neuromuscular Diagnostics

Contact Details

Business card at TUMonline

Academic Career and Research Areas

Prof. David Franklin investigates the physiological and computational principles of human neuromuscular motor control. His research examines how the nervous system controls the mechanical properties of the body to adapt to our external environment and produce skilful movement. To examine the computations underlying sensorimotor control, he blends computational and experimental approaches including robotics and virtual reality.
Prof. Franklin studied human physiology and was awarded a doctorate in neuroscience in 2005 from the Department of Kinesiology at Simon Fraser University (Canada). He worked as a researcher at the Institute for Advanced Telecommunications Research (Kyoto, Japan) from 1999 to 2006. He then spent 3 years as a research associate in the Department of Engineering at the University of Cambridge (U.K.). In 2010 he was awarded a Wellcome Trust RCD Fellowship and became a research fellow at the University of Cambridge. He has been an associate professor of Neuromuscular Diagnostics at TUM since 2016.

    Awards

    • Wellcome Trust Research Career Development Fellow (2010)
    • Governor General’s Gold Medal (2005)
    • Research Prize of Japanese Neural Network Society (2002)

    Key Publications

    Howard, IS, Wolpert DM, Franklin DW: “The value of the follow-through derives from motor learning depending on future actions”. Current Biology. 2015; 25(3): 397-401.

    Abstract

    Dimitriou M, Wolpert DM, Franklin DW: “The temporal evolution of feedback gains rapidly update to task demands”. Journal of Neuroscience. 2013; 3(26): 10898–10909.

    Abstract

    Franklin DW, Wolpert DM: “Computational mechanisms of sensorimotor control”. Neuron. 2011; 72(3): 425–442.

    Abstract

    Franklin DW, Burdet E, Tee KP, Osu R, Chew CM, Milner TE, Kawato M: “CNS learns stable, accurate, and efficient movements using a simple algorithm”. Journal of Neuroscience. 2008; 28(44), 11165-11173.

    Abstract

    Franklin DW, Liaw G, Milner TE, Osu, R, Burdet E, Kawato M: “Endpoint stiffness of the arm is directionally tuned to instability in the environment”. Journal of Neuroscience. 2007; 27(29), 7705-7716.

    Abstract